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LEITER TO THE EDITOR 

Monte Carlo simulation of the fully frustrated XY model 

D B Nicolaides 
H H Wills Physics Laboratory. University of Bristol, Bristol BS8 ITL, UK 

Received 30 December 1990. in final form 20 January 1991 

Abstract. We present results from Monte Carlo simulation of the fully frustrated XY 
model, or alternatively a Josephson junction array in an extemal field. Positional disorder 
of the junctions is allowed for and we find that this disorder splits the XY and lsing phase 
transitions of the model, as predicted by Granata and Kosterlitz. 

The phase transition in the fully frustrated XY model is far from being fully understood. 
Unlike the simple XY model, where an explicit operator equivalence exists between 
the model and the quantum field theory it  renormalizes onto, at its critical point (Amit 
er a/ 1980), the location in the space of O(2) x &invariant quantum field theories 
which describes the combined XY and king transitions of the fully frustrated XY 
model is not known. In this letter we present results from our Monte Carlo simulation 
of the fully frustrated XY model and speculate as to the nature of the effective critical 
theory. 

The Hamiltonian (neglecting kinetic terms) of the frustrated XY model is 

H = -J  1 cOs(e, - s, -A,) .  (1) 

Here we follow the conventions of Granato and Kosterlitz (1989), to whom the 
reader is referred for a fuller discussion. This Hamiltonian describes an array of 
Josephson junctions, or alternatively a grainy superconductor, under the identification 
of si with the phase of the grain i. The link integrals A, arise from the application of 
an external field, A, = ( 2 ~ / & )  fi A .  dl, where the flux quantum = hc/2e.  We con- 
sider the sites i to have the topology of a square lattice, though they may be randomly 
displaced from the perfect lattice with a Gaussian probability distribution of width A. 
We restrict ourselves to the fully frustrated case, where the average number of flux 
quanta per unit area is +. 

Our Monte Carlo procedure follows recent studies of the pure XY model (Gupta 
ef a/ 1988, Wolff 1989). We use a large lattice, 12S2 sites, and study the correlation 
length and susceptibility in the high-temperature phase, then fit to appropriate scaling 
forms to withdraw critical exponents. A more detailed exposition of this method and 
its possible pitfalls may be found in the review by Baillie (1990). The specific algorithm 
we have used is hybrid Monte Carlo (Duane et a/ 1987), which consists of including 
kinetic terms in the Hamiltonian (1). then generating trial configurations by integrating 
Hamilton's equations for a number of timesteps, followed by a global accept-reject. 

Previous simulations of this model include those of Teitel and Jayaprakash 
(1983a,b), Choi et al (1987). Thijssen and Knops (1988) and Scheinine (1989). We 
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define our order parameters following the paper by Scheinine. Specifically, the XY 
susceptibility is defined as a sum over sublattices as in equations ( 3 . 6 ~ ~ .  b )  of Scheinine 

,yxy = (1/4) x"' 
4 

j - 1  

and the local king order parameter so as in equation (3.8) of Scheinine 

s,=xsin(Oj- 0,-A,). (3) 
0 

From this local king order parameter we may calculate a susceptibility and correla- 
tion function (from which we extract the correlation length, as explained in Baillie 
(1990) in the usual way, by fitting the correlation function to a hyperbolic cosine). 
However, for the XY correlation function we use the definition of Fradkin et a/ (1978) 

rij =   COS(^, - e, -AJ). (4) 

This function is gauge invariant, but depends on the path connecting the sites i 
and j. We choose j = i + np, n = 0,1,. . . , where p is a lattice unit vector, and we average 
I' over the two lattice directions. 

Figures 1 and 2 present our results for no positional disorder, A = 0. We have fitted 
this data to the scaling forms 

I 

0.45 0.46 0.41 0.48 
Temperature 

Figure I. king (0) and XY (0) correlation lengths against temperature for a system with 
no positional disorder. Standard deviations are less than the symbol size, and the lines are 
merely to guide the eye. 
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Figure 2. king (0) and XY (U) susceptibilities against temperature for a system with no 
positional disorder. Standard deviations are less than the symbol size, and the lines are 
merely to guide the eye. 

where A, B, C, D, E and F a r e  non-universal constants, and we have, at first, restricted 
the exponents to their theoretical values U'= 1, VI=$, v X y  =$, y x y  =$. This fit gives 
an estimate of the respective king and XY critical temperatures that are equal to 
within errors: TFY=0.4512 (16), T:=0.4491 (20). We thus suspect that the effective 
critical theory at this point may include arbitrary O(2) x Z,-invariant operators. A clue 
to the nature of this effective theory comes from the actual value of the XY critical 
temperature. Our results, together with the results of Gupta el al (1988) and Wolff 
(1989) for the pure XY model, imply that for the simple square lattice, the fully 
frustrated XY model has a critical temperature very close to exactly half that of the 
pure XY model. In transforming these XY models into sine-Gordon models (by way 
of the Coulomb gas description, see Fradkin el a/ (1978)). the Villain approximation 
(which is surprisingly good here, see Janke and Kleinert (1986)) implies that the critical 
temperature of the corresponding sine-Gordon model changes from p'= 8.rr in the 
pure case to p2=4?r in the fully frustrated case. At this coupling, the genericrenormaliz- 
able O(2) x Z,-invariant quantum field theory is the supersymmetric sine-Gordon 
(SUSY G) model (Goldschmidt 1986a, b), described by the Lagrange density 

The suggestion that this theory might have something to do with the fully frustrated 
XY model was first made by Foda (1988). Attempts to substantiate our hand-waving 
connection between this and the fully frustrated XY model, by constructing an explicit 
operator equivalence between the models, as between the SUSYSG model and an 
anisotropic Ashkin-Teller model (Goldschmidt 1986b), are presently under investi- 
gation. 

Relaxing the constraint that the exponents assume their predicted values, we find 
y ' =  1.724 (20), y x y  =0.532 (28), Y ' =  1.009 (26). and v x y  =0.678 (165). We also find 
an estimate of the exponent q = 2 - F/ D = 0.257 (27). These values are acceptably 
close to the theoretical ones, except for the exponent governing the XY correlation 
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length. The ,y2 fit may be caught in a metastable minimum, as discussed by Baillie 
(1990). Much better statistics are needed. 

We have also simulated the model with positional disorder present, at a value of 
A = 0.1. Positional disorder destroys the sublattice structure used in defining the XY 
susceptibility, so we have located the XY transition temperature by looking at the 
spin-wave stiffness Y as defined in equation (3.5) in Scheinine 

Yxx=(*/L:)(E ( V )  co~(~,-O,--A,,)(&~&, 

- (z) sin($, - 0, -A,,)(& . >'I (7) 

and plotted in figure 3. Also included in this figure is the prediction of the Kosterlitz- 
Thouless theory (Nelson and Kosterlitz 1977) that at the transition the spin-wave 
stiffness should exhibit a universal jump discontinuity of 2 / ~ .  As with previous results 
the jump is slightly larger than the predicted universal value. From this we can roughly 
estimate T,"'= 0.30 (1 ) .  The Ising analysis is carried out as for the A = 0 case, and we 
obtain T:=0.3515(12). Thus the splitting of the two transitions, as predicted by 
Granato and Kosterlitz (1989), but not seen in previous, smaller simulations (Choi 
et al (1987)). is verified. 

0.3 i 

I 
0.29 0.31 0.33 0.35 

Temperature 

Figure 3. X Y spin-wave stiffness against temperature for a system with a positional disorder 
of A = O . I .  The straight line has the slope 2 1 ~ .  and is explained in the text. 

Further work is needed to understand the phase diagram of the fully frustrated 
XY model, and if simulation is to play a role an effective algorithm which eliminates 
critical slowing down at the XY-king transition is needed. Fourier acceleration is not 
adequate (Scheinine 1989), but suggests a promising generalization. Fourier acceler- 
ation includes a kinetic term in ( l ) ,  but replaces the mass of the spins by a 'mass 
tensor' (Bennett 1975), which is independent of the present $-configuration 
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where M, = mVi. and Vi. is the discrete lattice Laplacian. In fact, an arbitrary 0- 
dependent orthogonal transformation of this mass tensor is allowed 

M-A(8)V2AT(6'). (9) 

Ideally, we would like to appeal to mean-field theory and transform 0; into the 
stability matrix (Bray and Moore 1982) 

M, = -Jv COS( 0, - 8, -A,,) + 8, 1 J,, COS( 9, - 0, - A , k )  (10) 
( h  

Unfortunately, this matrix does not seem to be an orthogonal transformation of 
the lattice Laplacian. We are at present attempting to find the 'optimal' orthogonal 
transformation, which should map the eigenvectors of the stability matrix onto the 
modes of the system in the most effective way. 

Both the postdoctoral research assistantship and the Active Memory Technology DAP 
510, upon which the simulations were performed, were supported by a grant from the 
SERC Computational Science Initiative. 
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